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Abstract: The new bacterial catalyst, Bacillus cereus hydroxylates 
1,8-cineole (1) to give GR-m-hydroxy-l,f3-cineole, [(lR,4S,6R)-1,3,3- 
trimethyl-2-oxabicyclo(2,2,2)-octane-6-011, (3). The regio- and stereo- 
chemical outcome of this reaction was predicted using a model for the B. 
cereus hydroxylase. 

The stereospecific introduction of molecular oxygen to nonactivated 

carbon atoms remains a challenging goal in synthetic organic chemistry 
1 . 

Microorganisms with intact and highly organized monooxygenase enzyme 

systems activate molecular oxygen, and achieve such reactions under very 

mild reaction conditions. Microbial hydroxylation reactions.are usually 

regio- and stereospecific, and they have been widely exploited in the 

industrial synthesis of steroid hormonesa. Controlled hydroxylations also 

hold great potential for use with other groups of compounds3. 
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1,8-Cineole [1,3,3-trimethyl-2-oxabicyclo(2,2,2)octane] (1) is the 

major component of the oil from leaves of Eucalvntus radiata var. 
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&H3t. 
4 raliana . It is also an important representative of the class of 

fragrant monoterpenes which are available for derivatization and use as 

chiral synthons for chemical syntheses=. Microbial oxidations have been 

reported for 1,8-cineole by species of Rhodococcus6 and Pseudomonas 

flava' which grow by using 1 as a carbon source in place of sugar, and by 

AsnerPillus piaer'. All three of these biocatalysts formed multiple 

degradation products of 1,8-cineole in low yield. Rhodococcuggg. gave 

6-e-hydroxy-1,8-cineole and 6-oxo-1,8-cineole, both of unspecified 

stereochemistries as products, while 2. _flavf& gave 6S-m-, 2R-&- 

hydroxy-1,8-cineoles, lS,4R-6-oxocineole and a lactone q etabolite. A. 

pieer gave racemic 5-a-, 5-a-, and 6-a-hydroxy-1,8-cineole, as well 

as the 6- and =-ketone derivatives. 

Bacilu cereus (UI-1477) was identified as a useful new biocatalyst 

in the hydroxylation of 1,4-cineole (2)ldsg. Good yields of essentially 

pure 2R-a- (a), and 2R-m-hydroxy-1,4-cineole (a) were obtained, 

and the major alcohol product & was consistently obtained in yields 

eight times larger than a. The high stereochemical purities of both 

compounds, and the relative yields of hydroxylated 1,4-cineoles & and 

& permitted the description of a model for the B. hydroxylase cereus 

enzyme system. We assumed that a single enzyme was responsible for cat- 

alyzing both hydroxylation reactions, and that the isopropyl, methyl and 

oxygen bridge moieties of 2 all favored terpene binding to the enzyme 

surface for preponderant pro-lR-&-oxygenation. With the B. cereus 

enzyme model, one would predict that 1 would bind to the catalyst to 

favor pro-lR-m-hydroxylation, and that the bulky gem dimethyl-oxygen 

bridge of & would preclude substrate binding to enable pro-lS-e-1,8- 

cineole hydroxylation. 

Using our standard biocatalysis protocol', B. cereus was grown in 

500 ml of medium containing 500 mg of 1,8-cineole for 72 hours before 

the reaction was stopped. The methylene chloride extract (366 mg) was 

purified by silica gel column chromatography (hexanes:ethyl acetate, 4:1, 

v/v>. Similar fractions were combined to afford 154 mg of white crystals 

(fromohexanes) of 3 which gave the following values: mp, 94' (lit.7a, 98O); 

[eel;= = -31.28O (c = 1.6 in ethanol), (lit?a, 31'); high resolution mass 

spectrum, m/z 170.1313 for C II 
lo 18O9 (calc. 

170.1307) with major fragment 

ions at m/z 152 (M+ - H20), 137 (M - H20, - CH3); IR, > 

l3 C-NMR8 
max 

(cm-'> 3385, 

2900 - 2982, 1458, 1368, 1133, 1063, 977; (55.7 MHz, CDCl,> ppm, 

73.4 (C-S), 72.5 (C-l), 71.1 (C-2), 34.6 (C-31, 34.2 (C-41, 29.0 (C-9), 

28.6 (C-lo), 24.9 (C-61, 24.1 (C-71, 22.2 (C-5); 'II-NMR (360 MHz, CDC13) 

ppm, 1.10, 1.19 and 1.28 (three methyl groups), and 3.73 (lH, carbinol 
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methine, dclcl, J = 10, 7.5, 2 Hz). As the chemical shift of the methine 

proton for 5-hydroxy-1,8-cineole is always larger than 4.0 ppm 8,lO , the 

physical data for 2 suggested a 6-hydroxylated 1,8-cineole product. It is 

possible to discriminate between 6-a- and 6-_qg9-hydroxy-1,8-cineoles 

by high field proton NMR1l. The NYR signal of the 6-m-hydroxy-1,8- 

cineole a-carbinol methine proton usually resonates as a triplet, or a 

doublet of doublets, while the a-carbinol methine proton of the 

corresponding 6-a-hydroxy-1,8-cineole is split by W-type long range 

coupling with one of the 7-protons to appear as a ddd signal 12. Based 

upon these considerations, and the observed physical properties of the 

isolated B. cereus product, the structure of the only product formed by 

hydroxylation of L is optically pure GR-8.WQ-hydroxy-1,8-cineole 

[(lR,4S,6R)-1,3,3-trimethyl-2-oxabicyclo~2,2,2~octane-6-o1~ (3)13. 

The rate and yield of 1,8-cineole hydroxylation by &. cereus were 

determined by GC analyses' of methylene chloride extracts of reaction 

samples taken at different times. A 60% yield was obtained within 15 

hours, and the maximum yield of the hydroxylation reaction was 74% by 24 

hours. Levels of the GR-m-hydroxy-1,8-cineole product remained constant 

for 48 additional hours indicating that the bacterial catalyst does not 

utilize 2 for growth and energy. 

It is possible to utilize cell-free, crude enzyme preparations from 

&. cereug to catalyze the hydroxylation reaction. Cultures are grown as 
9 usual , cells are harvested by centrifugation, and disrupted by French 

pressure homogenization. The resulting homogenate is centrifuged at 

50,000 x g for 40 minutes and examined for the presence of cytochromes 

using difference spectroscopy 
14 . Cell free extracts contain a cytochrome 

P452 enzyme by this method, and they catalyze the hydroxylation reaction 

when NADH, II+ is added as a reducing cofactor together with 1,8-cineole. 

This work describes the first high-yielding and stereospecific 

hydroxylation of 1,8-cineole by a microbial catalyst, and it illustrates 

the potential for predicting the site and stereochemistry of hydroxyla- 

tion. Much more experience is required to validate the previously report- 

ed enzyme model, and we have screened additional mono-, sesqui- and 

diterpene substrates, most of which yield new and presumably hydroxylated 

products with B. cereus. The identification of these products is in 

progress. 
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